
Hierarchical QR factorization algorithms
for multi-core cluster systems

Jack Dongarra1,2,3, Mathieu Faverge1, Thomas Herault1, Julien Langou4 and Yves Robert1,5

1. University of Tennessee Knoxville, USA
2. Oak Ridge National Laboratory, USA

3. Manchester University, UK
4. University of Colorado Denver, USA; supported by the National Science Foundation grant # NSF CCF 1054864.

5. Ecole Normale Supérieure de Lyon, France
{dongarra — mfaverge — therault}@eecs.utk.edu, Julien.Langou@ucdenver.edu, Yves.Robert@ens-lyon.fr

Abstract—This paper describes a new QR factorization
algorithm which is especially designed for massively parallel
platforms combining parallel distributed multi-core nodes.
These platforms make the present and the foreseeable future
of high-performance computing. Our new QR factorization
algorithm falls in the category of the tile algorithms which
naturally enables good data locality for the sequential kernels
executed by the cores (high sequential performance), low
number of messages in a parallel distributed setting (small
latency term), and fine granularity (high parallelism). Each tile
algorithm is uniquely characterized by its sequence of reduction
trees. In the context of a cluster of multicores, in order
to minimize the number of inter-processor communications
(aka, “communication-avoiding” algorithm), it is natural to
consider two-level hierarchical trees composed of an “inter-
node” tree which acts on top of “intra-node” trees. At the
intra-node level, we propose a hierarchical tree made of three
levels: (0) “TS level” for cache-friendliness, (1) “low level” for
decoupled highly parallel inter-node reductions, (2) “coupling
level” to efficiently resolve interactions between local reductions
and global reductions. Our hierarchical algorithm and its
implementation are flexible and modular, and can accommo-
date several kernel types, different distribution layouts, and a
variety of reduction trees at all levels, both inter-cluster and
intra-cluster. Numerical experiments on a cluster of multicore
nodes (1) confirm that each of the four levels of our hierarchical
tree contributes to build up performance and (2) build insights
on how these levels influence performance and interact within
each other. Our implementation of the new algorithm with
the DAGUE scheduling tool significantly outperforms currently
available QR factorization softwares for all matrix shapes,
thereby bringing a new advance in numerical linear algebra
for petascale and exascale platforms.

Keywords-QR factorization; numerical linear algebra; hier-
archical architecture; distributed memory; cluster; multicore.

I. INTRODUCTION

Future exascale machines will likely be massively parallel

architectures, with 105 to 106 processors, each processor

itself being equipped with 103 to 104 cores At the node level,

the architecture is a shared-memory machine, running many

parallel threads on the cores. At the machine level, the ar-

chitecture is a distributed-memory machine. This additional

level of hierarchy, together with the interplay between the

cores and the accelerators, dramatically complicates the de-

sign of new versions of the standard factorization algorithms

that are central to many scientific applications. In particular,

the performance of numerical linear algebra kernels is at the

heart of many grand challenge applications, and it is of key

importance to provide highly-efficient implementations of

these kernels to leverage the impact of exascale platforms.

This paper investigates the impact of this hierarchical

hardware organization on the design of numerical linear

algebra algorithms. We deal with the QR factorization algo-

rithm which is ubiquitous in high-performance computing

applications, and which is representative of many numerical

linear algebra kernels. In recent years, the quest of efficient,

yet portable, implementations of the QR factorization algo-

rithm has never stopped [1], [2], [3], [4], [5], [6], [7], [8]. In

a nutshell, state-of-the-art software has evolved from block-

column panels to tile-based versions, and then to multi-killer

algorithms.

First the LAPACK library [9] has provided Level 3 BLAS

kernels to boost performance on a single CPU. The SCALA-

PACK library [10] builds upon LAPACK and provides a

coarse-grain parallel version, where processors operate on

large block-column panels, i.e. blocks of b columns of the

original matrix. Here b is the block size, typically b = 200
or more, for Level 3 BLAS performance. Inter-processor

communications occur through highly tuned MPI send and

receive primitives. The factorization progresses panel by

panel. Once the current panel is factored, updates are applied

on all the following panels (remember that the matrix

operated upon shrinks as the factorization progresses). So-

phisticated lookahead versions of the algorithms factor the

next panel while the current updates are still being applied

to the trailing matrix.

Then, the advent of multi-core processors has led to a

major modification in the algorithms [4], [5], [7], [1]. Now

each processor should run several threads in parallel to keep

all cores within that processor busy. Tiled versions of the

algorithms have thus been designed: dividing large block-

column panels into several tiles allows for a decrease in

2012 IEEE 26th International Parallel and Distributed Processing Symposium

1530-2075/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPS.2012.62

607

2012 IEEE 26th International Parallel and Distributed Processing Symposium

1530-2075/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPS.2012.62

607

the granularity down to a level where many smaller-size

tasks are spawned. In the current panel, the diagonal tile, or

killer tile, is used to kill all the tiles below it in the panel.

Because the factorization of the whole panel is now broken

into the killing of several tiles, the update operations can also

be partitioned at the tile level, which generates many tasks

to feed all cores. However, the dependencies between these

tasks must be enforced, and the algorithms have become

much more complicated.

A technical difficulty arises with the killing operations

within the panel: these are sequential because the diagonal

tile is used for each of them, hence it is modified at each

killing operation. This observation applies to the updates

as well: in any trailing column, the update of a tile must

wait until the update of its predecessor tile is completed. To

further increase the degree of parallelism of the algorithms, it

is possible to use several killer tiles inside a panel. The only

condition is that concurrent killing operations must involve

disjoint tile pairs. Of course, in the end there must remain

only one non-zero tile on the panel diagonal, so that all

killers but the diagonal tile must be killed themselves later

on, using a reduction tree of arbitrary shape (e.g. serial, fully

binary, ...). The extra source for parallelism resides in the

fact that the whole matrix can be partitioned into domains,

with one killer per domain responsible for killing the tiles

local to the domain. In each domain, all these operations,

and the corresponding updates, are independent and can

run concurrently. Such multi-killer algorithms represent the

state-of-the-art for multi-core processors, but they are still

being refined, because the impact of the reduction trees

which are chosen is not fully understood, and also because

using many killers implies the use of different tile kernels,

called TT kernels, which are less-efficient than the TS-

kernels used with a single killer per panel.

The goal of this paper is to move a step forward and

to introduce a flexible and modular algorithm for clusters

of multi-core processors. Tackling such hierarchical archi-

tectures is a difficult challenge for two reasons. The first

challenge arises from the algorithmic perspective. Brand new

avenues must be explored to accommodate the hierarchical

nature of multi-core cluster systems. Concurrent killers allow

for more parallelism, but the reduction tree that follows

breaks the smooth pipelining of operations from one panel to

the next. With one domain per processor, we may not have

enough parallel operations to feed all the many-cores, so we

may need to have several domains per processor. The re-

duction operations involve inter-processor communications,

which are much slower than intra-processor shared memory

accesses. Limiting their number could be achieved with a

block row-distribution, but this would severely imbalance

processor loads. This small list is not exhaustive: good load-

balance, efficient pipelining, and memory locality are all

conflicting objectives. The main contribution of this paper

is to provide a novel algorithm that is fully aware of the

hierarchical nature of the target platform and squeezes the

most out of its resources.

The second challenge is at the programming level. Within

a multi-core processor, the architecture is a shared-memory

machine, running many parallel threads on the cores. But

the global architecture is a distributed-memory machine, and

requires MPI communication primitives for inter-processor

communications. A slight change in the algorithm, or in the

matrix layout across the processors, might call for a time-

consuming and error-prone process of code adaptation. For

each version, one must identify, and adequately implement,

inter-processor versus intra-processor kernels. This dramat-

ically complicates the task of the programmer if she relies

on a manual approach. We solve this problem by relying on

the DAGUE software [11], [8], so that we can concentrate

on the algorithm and forget about MPI sends and thread

synchronizations. Once we have specified the algorithm at

a task level, the DAGUE software will recognize which

operations are local to a processor (and hence correspond

to shared-memory accesses), and which are not (and hence

must be converted into MPI communications). Our exper-

iments show that this approach is very powerful, and that

the use of a higher-level framework does not prevent our

algorithms from outperforming all existing solutions.

In this paragraph, we briefly highlights our contribution

with respect to existing work (see Section III for a full

overview). Two recent papers [8], [2] have discussed tiled

algorithms for clusters of multicore. In [2], the authors use

a two-level hierarchical tree made of an inter-node binary

tree on top of an intra-node TS flat tree and use a 1D block

data layout. The limitations are: (1) the use of a flat tree at

the node level is not adapted when the local matrices are tall

and skinny; (2) the use of the 1D block data layout results

in serious load imbalance for square matrices. In [8], the

authors use a plain flat tree on top of a 2D block data layout.

The limitations are: (1) the use of a flat tree is not adapted

for tall and skinny matrices; (2) the flat tree with natural

ordering is not aware of the 2D data block cyclic distribution

and therefore performs many more communications than

needed. Our algorithm addresses all these issues while

keeping the positive features. At the intra-node level, we

propose a hierarchical tree made of three levels: (0) “TS

level” for cache-friendliness, (1) “low level” for decoupled

highly parallel inter-node reductions, (2) “coupling level” to

efficiently resolve interactions between local reductions and

global reductions. Finally (3) a “high level” tree is used for

the inter-node reduction. The use of the “high level” tree

enables a small number of interprocessor communications,

thereby making our algorithm “communication-avoiding”.

For the levels (1), (2) and (3) of the hierarchical algorithm,

the reduction can accommodate any tree. Our implementa-

tion is flexible and modular, and proposes several reduction

trees per level. This allows us to use those reduction trees

which are efficient for a given matrix shape. Finally the

608608

“coupling level” – which operates within a node, and fits

in between the intra- and inter-cluster reductions – resolves

all interactions between the low level and high level trees,

in such a way that the low level tree (acting within a

cluster) becomes decoupled from the influence of the other

clusters. To summarize, our new algorithm is a tile QR

factorization which is (a) designed especially for massively

parallel platforms combining parallel distributed multi-core

nodes; (b) features a hierarchical four-level tree reduction;

(c) incorporates a novel coupling level; (d) is 2D block

cyclic aware; and (e) implements a variety of trees at each

level. The resulting properties of the algorithm are (i) cache-

efficiency at the core level, (ii) high granularity at the

node level, (iii) communication avoiding at the distributed

level, (iv) excellent load balancing overall, (v) nice coupling

between the inter-node and intra-node interactions, and (vi)

ability to efficiently handle any matrix shape.
The rest of the paper is organized as follows. We start with

a quick review of tiled QR algorithms (Section II). Then we

detail the key principles underlying the design of state-of-

the-art algorithms from the literature (Section III). The core

contributions of the paper reside in Section IV, where we

describe our new algorithm in full details, and in Section V,

where we provide experiments showing that we outperform

current state-of-the-art implementations.

Algorithm 1: Generic QR algorithm.

for k = 0 to min(m,n)− 1 do
for i = k + 1 to m− 1 do

elim(i, killer(i, k), k)

Algorithm 2: Elimination elim(i, killer(i, k), k).

GEQRT (killer(i, k), k)
TSQRT (i, killer(i, k), k)
for j = k + 1 to n− 1 do

UNMQR(killer(i, k), k, j)
TSMQR(i, killer(i, k), k, j)

(a) With TS (Triangle on top of square) kernels

GEQRT (killer(i, k), k)
GEQRT (i, k)
for j = k + 1 to n− 1 do

UNMQR(killer(i, k), k, j)
UNMQR(i, k, j)

TTQRT (i, killer(i, k), k)
for j = k + 1 to n− 1 do

TTMQR(i, killer(i, k), k, j)

(b) With TT (Triangle on top of triangle) kernels.

II. TILED QR ALGORITHMS

The general shape of a tiled QR algorithm for a tiled

matrix of m×n tiles, whose rows and columns are indexed

from 0, is given in Algorithm 1. Here i and k are tile indices,

and we have square b × b tiles, where b is the block size.

Thus the actual size of the matrix is M×N , with M = m∗b
and N = n ∗ b. The first loop index k is the panel index,

and elim(i, killer(i, k), k) is an orthogonal transformation

that combines rows i and killer(i, k) to zero out the tile

in position (i, k). Each elimination elim(i, killer(i, k), k)
consists of two substeps: (i) first in column k, tile (i, k)
is zeroed out (or killed) by tile (killer(i, k), k); and (ii) in

each following column j > k, tiles (i, j) and (killer(i, k), j)
are updated; all these updates are independent and can be

triggered as soon as the killing is completed. The algorithm

is entirely characterized by its elimination list, which is the

ordered list of all the eliminations elim(i, killer(i, k), k) that

are executed.

To implement an orthogonal transformation

elim(i, killer(i, k), k), we can use either TT kernels

or TS kernels, as shown in Algorithm 2. In a nutshell,

a tile can have three states: square, triangle, and zero.

Initially, all tiles are square. A killer must be a triangle, and

we transform a square into a triangle using the GEQRT
kernel. With a single killer, we start by transforming it into

a triangle (kernel GEQRT) before eliminating square tiles.

To kill a square with a triangle, we use the TSQRT kernel.

With several killers, we have several triangles, hence the

need for an additional kernel to eliminate a triangle (rather

than a square): this is the TTQRT kernel. The number of

arithmetic operations performed by a TSQRT kernel (to

kill a square) is the same as that of a GEQRT (transform

the square into a triangle) followed by a TTQRT (kill

a triangle). The same observations basically applies for

the corresponding updates, which can be decomposed in

a similar way (see Algorithm 2). The TS kernels can

only be used within a flat tree at the first tree level (so

that tiles are square). On the one hand, TT kernels offer

more parallelism than TS kernels. On the other hand, the

sequential performance of the TS kernels is higher (e.g.,

by 10% in our experimental section) than the one of the

TT kernels. We refer to [1] for more information on the

various kernels.

Any tiled QR algorithm used to factor a tiled matrix

of m × n tiles is characterized by its elimination list.

Obviously, the algorithm must zero out all tiles below the

diagonal: for each tile (i, k), i > k, 0 ≤ k < min(m,n),
the list must contain exactly one entry elim(i, �, k), where

� denotes some row index killer(i, k) . There are two

conditions for a transformation elim(i, killer(i, k), k) to

be valid: • both rows i and killer(i, k) must be ready,

meaning that all their tiles left of the panel (of indices (i, k′)
and (killer(i, k), k′) for 0 ≤ k′ < k) must have already

been zeroed out: all transformations elim(i, killer(i, k′), k′)
and elim(killer(i, k), killer(killer(i, k), k′), k′) must pre-

cede elim(i, killer(i, k), k) in the elimination list • row

killer(i, k) must be a potential annihilator, meaning that

609609

tile (killer(i, k), k) has not been zeroed out yet: the trans-

formation elim(killer(i, k), killer(killer(i, k), k), k) must

follow elim(i, killer(i, k), k) in the elimination list.

A critical result is that no matter what elimination list is

used, or which kernels are called, the total weight of the

tasks for performing a tiled QR factorization algorithm is

constant and equal to 2mn2 − 2/3n3. Using M = mb, and

N = nb, we retrieve 2MN2− 2/3N3 flops, the exact same

number as for a standard Householder reflection algorithm

as found in LAPACK (e.g., [9]). In essence, the execution of

a tiled QR algorithm is fully determined by its elimination

list. Each transformation involves several kernels, whose

execution can start as soon as they are ready, i.e., as soon

as all dependencies have been enforced.

III. RELATED WORK

In this section, we survey tiled QR algorithms from the

literature, and we outline their main characteristics. We start

with several examples to help the reader better understand

the combinatorial space that can be explored to design such

algorithms.

A. Factoring the first panel

In this section we discuss several strategies for factoring

the first panel, of index 0, of a tiled matrix of m × n
tiles. When designing an efficient algorithm, the first panel

should not be considered separately from the rest of the

factorization, but concentrating on a single panel is enough

to illustrate several important points. Consider a panel with

m = 12. All tiles except the diagonal, tile 0, must be zeroed

out. We also know that in all algorithms, tile 0 will be used

as the killer in the last elimination. The simplest solution is

to use a single killer for the whole panel. If we do so, this

single killer has to be the diagonal tile. The eliminations

will be all sequentialized (because the killer tile is modified

during each elimination), but they can be performed in any

order. Using an ordering from top to bottom, the elimina-

tion list is elim(1, 0, 0), elim(2, 0, 0), . . . , elim(m−1, 0, 0).
The corresponding reduction tree for panel 0 is shown in

Figure 1(a) and is called the flat tree.

With a single killer, all eliminations in the panel must be

executed one after the other. The only source of parallelism

resides in the possibility to execute the updates of some

previous eliminations while zeroing out the next tile. How-

ever, parallel eliminations are possible if we conduct these

on disjoint pairs of rows. In the beginning, we can have as

many killers as half the number of rows. And the next step,

half of the remaining non-zero rows can be killed. Iterating,

we reduce the panel with a binary tree instead of a flat tree,

as illustrated in Figure 1(b).

With several killers, we have to use TT elimination

kernels, which are less efficient than TS kernels. This

relative inefficiency of the TT kernels is a first price to

pay for parallelism. A second price to pay arises from

(a)
� � � � � � � 	
 � �� ��

(b)

� � � � � � � 	
 � �� ��

(c)

� � � � � � � 	
 � �� ��

(d)

� � � � � � � 	
 � �� ��

Figure 1: Reduction trees for panel 0: (a) Flat; (b) Binary;

(c) Flat/binary; (d) Domain (2 domains per cluster).

locality issues. In a shared-memory environment, re-using

the same killer several times allows for better cache reuse.

This is even more true in distributed-memory environments,

where the cost of communications can be much higher than

local memory accesses. In such environments, we have to

account for the data distribution layout. Assume that we have

p = 3 clusters P0, P1 and P2. Here we use the term cluster
to denote either a single processor, or a shared-memory

machine equipped with several cores. There are two classical

ways to distribute rows to clusters, by blocks, or cyclically.

(In the general case one would use a 2D grid, but we use

a 1D grid for simplicity in this example). In our example,

the block distribution nicely fits with the flat tree reduction.

With this combination of block/flat, the ordering of the

eliminations is such that the diagonal tile is communicated

only once from one cluster to the next one. Adding a last

communication to store the tile back in P0 gives a count of

p communications. On the contrary, the cyclic distribution is

communication-intensive for the flat tree reduction, since we

obtain as many as m communications, one per elimination

and one for the final storage operation. However, there are

two important observations to make:

• With any data layout, one can always re-order the elimina-

tions so as to perform only p communications with a flat tree.

The killer can perform all local eliminations before being

sent to the next cluster. With the cyclic/flat combination in

the example, we eliminate rows 3, 6, 9, then rows 1, 4, 7,

610610

10, and finally rows 2, 5, 8, 11.

• There is a downside to fewer communications, namely

higher start-up times. The cyclic/flat combination enables

each cluster to become active much earlier (starting the

updates) while the re-ordering dramatically increases waiting

times. Note that waiting times are also high for the block/flat

combination.

We make similar observations for the binary tree. In the

example, the cyclic distribution requires many more inter-

cluster eliminations than the block one, which requires only

two, namely the last two eliminations. But this is an artifact

of the example (take p = 4 instead of p = 3 to see

this). In fact, for both distributions, a better solution may

be to use local flat trees: within each cluster, a single tile

acts as the killer for all the local tiles. These flat trees are

independent from one cluster to another, and the eliminations

proceed in parallel. Then a binary tree of size p is used

to eliminate p − 1 out of the p remaining tiles (one per

cluster). Communications are then reduced to a minimum.

And because the local trees operate in parallel, there are

no more high waiting times at start-up, contrarily to the

case with a single global killer given priority to local tiles.

This flat/binary reduction is illustrated in Figure 1(c). In this

example, the local killers are rows 0, 1 and 2, and the binary

tree has only 3 leaves, one per cluster. Note that the tree is

designed with a cyclic distribution in mind: with a block

distribution, the local killers would be rows 0, 4 and 8.

Further refinements can be proposed. The flat/binary strat-

egy may suffer from not exhibiting enough parallelism at

the cluster level: local trees do execute in parallel, but each

with a single killer. Parallelizing local eliminations may be

needed when the cluster is equipped with many cores. The

idea is then to partition the rows assigned to each cluster into

smaller-size domains. Each domain is reduced using a flat

tree, but there are more domains than clusters. This domain

tree reduction is illustrated in Figure 1(d) with two domains

per cluster. In the example each domain is of size 2, hence

the corresponding flat tree is reduced to a single elimination,

but there are two domains, hence two killers, per cluster.

The next question is: how to reduce these six killers? We

can use a binary tree, as shown in Figure 1(d). But there is

a lot of flexibility here. For instance we may want to give

priority to local eliminations, hence to reduce locally before

going inter-cluster. This amounts to using a local reduction

tree to eliminate all domain killers but one within a cluster,

and then a global reduction tree to eliminate all remaining

killers but one within the panel. Let m = p× d× a, where

a is the domain size and p the number of clusters. There

are d domains per cluster, hence each local reduction tree

is of size d, while the global reduction tree is of size p.

Note that these two trees may well be of different nature,

all combinations are allowed! In the example, there are only

d = 2 domains per cluster, so the local tree is unique, and

using a binary tree for the global tree leads to the same

elimination scheme as using a single binary tree for the six

killers, as in Figure 1(d).

B. Factoring several panels

We have reviewed several strategies to factor the first

panel of the m×n tile matrix. But the whole game amounts

to factoring min(m,n) panels, and efficiently pipelining

these factorizations is critical to the performance of the QR

algorithm. This section aims at illustrating several trade-offs

that can be made. A striking observation is that using a flat

tree reduction in each panel provides a perfect pipelining,

while using a binary tree reduction in each panel provokes

“bumps” in the schedule. This explains that flat trees have

been predominantly used in the literature, until the advent

of machines equipped with several cores. Such architectures

called for using several killers in a given panel, hence for

binary trees, and later domain trees.

The inefficient pipelining of binary trees has only been

identified recently. To remedy this problem while keeping

several killers inside a panel, one can use the GREEDY

reduction [1] . The GREEDY algorithm nicely combines

intra-panel parallelism and inter-panel pipelining. In fact,

under the simplifying assumption of unit-time eliminations

(hence regardless of their number of updates), it has been

shown [12] that no algorithm can proceed faster! At each

step, the GREEDY algorithm eliminates as many tiles as

possible in each column, starting with bottom rows. The

pairing for the eliminations is done as follows: to kill a bunch

of z consecutive tiles at the same time-step, the algorithm

uses the z rows above them as killers, pairing them in the

natural order.

Recall from the study with a single panel that locality

issues are very important in a distributed-memory envi-

ronment, i.e. with several clusters. The previous GREEDY

algorithm is not suited to a matrix whose rows have been

distributed across clusters, and two levels of reduction, local

then global, are still highly desirable. But in addition to

locality, a new issue arises when factoring a full matrix

instead of a single panel: because the number of active rows

decreases from one panel to the next, block distributions

are no longer equivalent to cyclic distributions: the former

induces a severe load imbalance (clusters become inactive

as the execution progresses) while the latter guarantees that

each cluster receives a fair share of the work until the very

end of the factorization.

Finally, we point out that dealing with a coarse-grain

model where each elimination requires one time unit, as

in all previous tables and figures, is a drastic simplification.

Tiled algorithms work at the tile level: after each zero-ing

out, as many update tasks are generated as there are trailing

columns after the current panel. The total number of tasks

that are created during the algorithm is proportional to the

cube of the number of tiles, and schedulers must typically

set priorities to decide which tasks to execute among those

611611

ready for execution. Still, the coarse-grain model allows us

to understand the main principles that guide the design of

tiled QR algorithms.

C. Existing tiled QR algorithms

While the advent of multi-core machines is somewhat

recent, there is a long line of papers related to tiled QR

factorization. Tiled QR algorithms have first been introduced

in Buttari et al. [4], [13] and Quintana-Ortı́ et al. [5] for

shared-memory (multi-core) environments, with an initial

focus on square matrices. The sequence of eliminations pre-

sented in these papers is analogous to SAMEH-KUCK [14],

and corresponds to reducing each panel with a flat tree: in

each column, there is a unique killer, namely the diagonal

tile.

The introduction of several killers in a given column dates

back to [14], [15], [16], although in the context of traditional

element-wise (non-blocked) algorithms.

In the context of a single tile column, the first use of

a binary tree algorithm (working on tiles) is due to da

Cunha et al. [17]. Demmel et al. [6] present a general

tile algorithm where any tree can be used for each panel,

while Langou [18] explains the tile panel factorization as a

reduction operation.

For shared-memory (multi-core) environments, recent

work advocates the use of domain trees [7] to expose

more parallelism with several killers while enforcing some

locality within domains. Another recent paper [1] introduces

tiled versions of the Greedy algorithm [12] and of the

Fibonacci scheme [15], and shows that these algorithms are

asymptotically optimal. In addition, they experimentally turn

out to outperform all previous algorithms for tall and skinny

matrices.

Preliminary hierarchical two-level trees have been pre-

sented by Agullo et al. in the context of grid computing

environment [3] (binary on top of binary, for tall and

skinny matrices), Agullo et al. in the context of multicore

platform [7] (binary on top of flat, for any matrix shapes),

and Demmel et al. in the context of multicore platform [19]

(binary on top of flat, for tall and skinny matrices).

In this paper, we further investigate the impact of the

Greedy and Fibonacci schemes, but for distributed-memory

environments. There are two recent works for such environ-

ments. The approach of [3] uses a hierarchical approach: for

each matrix panel, it combines two levels of reduction trees:

first several local binary trees are applied in parallel, one

within each cluster, and then a global binary tree is applied

for the final reduction across clusters. Because [3] focuses

on tall and skinny matrices, it uses a 1D block distribution

for the matrix layout (hence a 1D cluster grid). The approach

of [2] also uses a hierarchical approach, and also uses a

1D block distribution. The main difference is that the first

level of reduction is conducted with a flat tree within each

cluster. We point out that the block distribution is suited

only for tall and skinny matrices, not for general matrices.

Indeed, with an m × n matrix and p clusters, the cyclic

distribution is perfectly balanced (neglecting lower order

terms), while the speedup attainable by the block distribution

is bounded by p(1 − n
3m): this is acceptable if n � m but

a high price to pay if, say, m = n. However, it is quite

possible to modify the algorithm in [2] so as to use a cyclic

distribution, at the condition of re-ordering the eliminations

to give priority to local ones over those that require inter-

cluster communications. In fact, the hierarchical algorithm

introduced in this paper can be parametrized to implement

either version, the original algorithm in [2] as well as the

latter variant with cyclic layout.

IV. HIERARCHICAL ALGORITHM

This section is devoted to the new hierarchical algorithm

that we introduce for clusters of multicores. We outline the

general principles (Section IV-A) before working out the

technical details through an example (Section IV-B). Then

we briefly discuss the implementation within the DAGUE

framework in Section IV-C.

A. General description

Here is a high-level description of the features of the

hierarchical algorithm, HQR:

• Use a 2D cyclic distribution of tiles along a virtual p× q
cluster grid. The 2D-cyclic distribution is the one that best

balances the load across resources.

• Use domains of a tiles, and use TS kernels within do-

mains. Thus, within each cluster, every a-th tile sequentially

kills the a− 1 tiles below it. The idea is to benefit from the

arithmetic efficiency of TS kernels. Note that if a = 1, the

algorithm will use only TT kernels.

• Use intra-cluster reduction trees within clusters. Here, the

idea is to locally kill as many tiles as possible, without inter-

processor communication. These intra-cluster trees depend

upon the internal degree of parallelism of the clusters: we

can use a binary tree or a GREEDY reduction for clusters

with many cores, or a flat tree reduction if more locality and

CPU efficiency is searched for. Note that these reductions

are necessarily based upon TT kernels, because they involve

killer tiles from the domains.

• Use inter-cluster reduction trees across clusters (again,

necessarily based upon TT kernels). The inter-cluster reduc-

tion trees are of size p, because for each panel they involve

a single tile per cluster. Here also, the trees can be freely

chosen (flat, binary, greedy).

There already are many parameters to explore: the arith-

metic performance parameter a, the shape p×q of the virtual

grid if we are given C1 physical clusters with C2 cores each,

and the shape of the intra- and inter- cluster reduction trees.

In fact, there is an additional complication. Consider a given

cluster: ideally, we would like to kill all tiles but one in

612612

each panel, i.e., we would like to reduce each cluster sub-

matrix to a diagonal, and then proceed with inter-cluster

communications to finish up the elimination. Unfortunately,

because of the updates, it is not possible to locally kill “in

advance” so many tiles, and one needs to wait for the inter-

processor reduction to progress significantly to be able to

perform the last local eliminations. This coupling scheme is

explained in Section IV-B below.

Finally, we point out that the actual (physical) distribution

of tiles to clusters needs not obey the virtual p × q cluster

grid. In fact, we can always use another grid to map tiles to

processors. This additional flexibility allows us to execute all

previously published algorithms simply by tuning the actual

distribution parameters (see Section V).

(a) Global (b) Local

Figure 2: Views of the tile labels.

B. Working out an example

Consider a m×n tiled matrix, with m = 24 and n = 10.

We use a p × q virtual grid with p = 3 and q = 1, and an

arithmetic parameter a = 2. Thus we have a unidimensional

grid with p = 3 clusters. A global view of the matrix is

given in Figure 2(a), while local distributions within each

cluster are shown in Figures 2(b). In both figures, tiles are

colored according to their assigned processor (red for P0,

yellow for P1 and green for P2). The label inside each tile

characterizes its level of reduction, as explained below.

Level 0 tiles–: we have domains of size a = 2, so that

in essence every second tile is killed by a TS kernel, and

the killer is always the tile above it in the local view of the

figure 2(b). However, as shown in Figure 2(b), this holds

true only for even-numbered tiles that are below the local

diagonal. This local diagonal is a line of slope 1 in the local

view, hence of slope p in the global view. If the matrix is

tall and skinny, the proportion of level 0 tiles tends to be

one half, but it is much less for square matrices.

Level 1 tiles–: level 1 tiles are the local killers of level 0
tiles that lie strictly below the local diagonal. Such tiles can

be killed locally, without any inter-cluster communication.

In other words, it is possible to kill all tiles of level 0 and 1
locally, in parallel on each cluster, before needing any inter-

cluster communication. At the end of this local elimination,

all tiles lying in the lower triangle below the local diagonal

have been killed, and the last killer on each panel is the

tile on the local diagonal (e.g., tile (6, 2) for panel 2 in

cluster P0). The elimination of the lower triangle can be

conducted using various types of reduction trees, flat, binary

or GREEDY.

Level 3 tiles–: consider the panel of index k, and a

cluster Pq . Consider the top tile on or below the matrix

diagonal, i.e., the first tile in column k whose row index is

at least k. If this tile has row index k, it is the diagonal tile;

otherwise, if its row index is greater than k, it will be the last

tile killed in this panel. There are p such top tiles, one per

cluster, and they are located on the first p diagonals of the

matrix. Reducing the p top tiles for a given panel induces

inter-cluster communications. Within each panel, this high-

level reduction tree is of size p, and be freely chosen as flat,

binary or GREEDY.

Level 2 tiles–: these are the “domino” tiles. In each

panel, using the local view within a cluster, they are located

between the top tile (not included) and the local diagonal tile

(included). Their number increases together with the panel

index, since level 2 tiles lie between a line of slope 1/p and

one of slope 1 in the local view. While level 0 and level 1
tiles are killed independently within each cluster, level 2 tiles

can only be killed after some inter-cluster communication

has taken place. The goal of the coupling level tree is to

efficiently resolve interactions between local reductions and

global reductions, and to kill all level 2 tiles as soon as

possible. To see the coupling level tree in action, consider

the first level 2 tile, in position (4, 1) and assigned to P1.

Tile (4, 1) is killed by tile (1, 1), the top tile of P1 for

panel 1: this corresponds to the elimination elim(4, 1, 1),
which is intra-cluster (within P1). But tile (1, 1) is not

ready to kill tile (4, 1) until it has been updated for the

elimination elim(1, 0, 0), which is inter-cluster: level 3 tile

(0, 0) kills level 3 tile (1, 0), and tile (1, 1) is updated during

this elimination. As soon as the update ends, elim(4, 1, 1)
is triggered, and tile (4, 1) is killed. A similar sequence

takes place on to P2, where the update of tile (2, 1) during

elim(2, 0, 0) (inter-cluster) must precede the killing of level

2 tile (5, 1) (during elim(5, 2, 1), intra-cluster). In fact,

we see that inter-cluster eliminations in the high-level tree

successively trigger eliminations in the coupling tree, like a

domino that ripples in the area of level 2 tiles.

613613

Execution scheme–: with an infinite number of re-

sources, the execution would progress as fast as possible.

The elimination list of the algorithm is the composition of

the reduction trees at all the different levels. All killers

are known before the execution. Each component of an

elimination is triggered as soon as possible, i.e. as soon as

all dependencies are satisfied: first we have the killing of

the tile, and then the updates in the trailing panels. Note

that the overall elimination scheme is complex, and mixes

the killing of tiles at all levels. With a fixed number of

resources, it is necessary to decide an order of execution of

the tasks, hence to schedule them: this is achieved through

the DAGUE environment.

C. Implementation with DAGUE

DAGUE is a high-performance fully-distributed schedul-

ing environment for systems of micro-tasks. It takes as

input a problem-size-independent, symbolic representation

of a Direct Acyclic Graph of tasks, and schedules them

at runtime on a distributed parallel machine of multi-cores.

Data movements are expressed implicitly by the data flow

between the tasks in the DAG representation. The runtime

engine is then responsible for actually moving the data

from one machine (cluster) to another, using an underlying

communication mechanism, like MPI. A full description of

DAGUE, and the implementation of classical linear algebra

factorizations in this environment, can be found in [11], [8].

To implement the generic QR algorithm in DAGUE, it

is sufficient to give an abstract representation of all the

tasks (eliminations and updates) that constitute the QR

factorization, and how data flows from one task to the

other. Since a tiled QR algorithm is fully determined by its

elimination list, this basically consists only into providing

a function that the runtime engine is capable of evaluating,

and that computes this elimination list. The DAGUE object

obtained this way is generic: when instantiating a DAGUE

QR factorization, the user sets all parameters that define this

elimination list (p, q, a, the shape of the local and high-level

trees), defining a new DAG at each instantiation. We point

out that this DAG is not fully generated: DAGUE keeps

only a parametric representation of the DAG in memory,

and interprets symbolic expressions at runtime to explicitly

represent only the ready tasks at any given time.

At runtime, tasks executions trigger data movements, and

create new ready tasks, following the dependencies defined

by the elimination list. Tasks that are ready to compute

are scheduled according to a data-reuse heuristic: each core

will try to execute close successors of the last task it ran,

under the assumption that these tasks require data that was

just touched by the terminated one. This policy is tuned by

the user through a priority function: among the tasks of a

given core, the choice is done following this function. To

balance load between the cores, tasks of a same cluster in

the algorithm (reside on a same shared memory machine) are

shared between the computing cores, and a NUMA-aware

job stealing policy is implemented. The user is responsible

for defining the affinity between data and tasks, and to

distribute the data between the computing nodes. Thus, she

defines which task execute on which node, and remains

responsible for this level of load balancing. In our case,

the data distribution is a p × q grid of b × b tiles, with a

cyclic distribution CYCLIC (1) of tiles across both grid

dimensions.

V. EXPERIMENTS

A. Experimental Conditions

The purpose of this performance evaluation is to high-

light the features of the proposed algorithm, and to com-

pare its efficiency with state-of-the-art QR factorization

implementations. We use edel, a parallel machine hosted

by the Grid’5000 experimental platform [20], to support

the experiments. These experiments feature 60 multi-core

machines, each equipped with 8 cores, and an Infiniband

20G interconnection network. The machines feature two

NUMA Nehalem Xeon E5520 at 2.27GHz (hyperthreading

is disabled), with 12GB of memory (24GB per machine).

The system is running the Linux 64bit operating system,

version 2.6.32-5-amd64 (Debian 2.6.32-35). The software is

compiled with Gcc version 4.4.5, and GFortran 4.4.5 when

applicable. BLAS kernels were provided by the MKL library

from the Intel compiler suite 11.1. The DAGUE software

from the mercurial repository revision 3130 uses Open MPI

version 1.4.3 as network back-end. All experiments have

been run at least 5 times, and the average value is presented,

together with the standard deviation. We use whiskers to

represent standard deviation on all of our figures. For each

experiment, we compute the Q factor of the QR factorization

(by applying the reverse trees to the identity) and check (a)

that Q has orthonormal columns and (b) that A is equal to

Q∗R. All checks were satisfactory up to machine precision.

The theoretical peak performance of this machine for

double-precision is 9.08 GFlop/s per core, 72.64 GFlop/s

per node, and 4.358 TFlop/s for the whole machine. The

best performance for running the dTSMQR operation in a

single core, has been measured at 7.21 GFlop/s (79.4% of

the theoretical peak), and the dTTMQR operation has been

measured at 6.28 GFlop/s (69.2% of the theoretical peak).

Depending on the a value chosen, these numbers can be

seen as practical peaks. For example, if a = 1, most of the

flops are in dTTMQR (69.2% of the theoretical peak). As

a gets larger, more flops shift to dTSMQR (79.4% of the

theoretical peak).

Our implementation of HQR operates on a virtual grid

p×q set to 15×4, it feature a TS level with parameter a (set

a to 1 for no TS, and a = m/p for full TS on the node), a

choice of four different TT trees for the low level (GREEDY,

BINARYTREE, FLATTREE, FIBONACCI), the coupling level

can be activated or not. When it is activated, the domino

614614

 0

 500

 1000

 1500

 2000

 2500

4480 8960 17920 35840 71680 143360 286720

P
er

fo
rm

an
ce

 (
G

F
lo

p/
s)

M

High-Level Tree
a=1, greedy
a=4, greedy

a=8, greedy
a=1, binary

a=4, binary
a=8, binary

(a) low-level tree set to Greedy

 0

 500

 1000

 1500

 2000

 2500

4480 8960 17920 35840 71680 143360 286720

P
er

fo
rm

an
ce

 (
G

F
lo

p/
s)

M

High-Level Tree (continued)
a=1, flat
a=4, flat

a=8, flat
a=1, fibonacci

a=4, fibonacci
a=8, fibonacci

(b) low-level tree set to Flat

Figure 3: Performance of the HQR algorithm on a M × 4, 480 matrix. (Domino optimization not activated). Influence of

the TS level (a value), low level and high level trees.

TT tree is used by default, and there is a choice of four

different TT trees for the high level (GREEDY, BINARY-

TREE, FLATTREE, FIBONACCI). Tiles of size b×b are used.

The DAGUE engine offers several data distribution and

automatically handles the data transfers when needed. As

a consequence, our DAGUE implementation would operate

on any DAGUE-supported data distribution. For HQR, we

focus on 2D block cyclic distribution using a p× q process

grid mapping the algorithm virtual grid.
We compare our algorithm to [BBD+10] [8],

[SLHD10] [2], and SCALAPACK [10]. We note that

[SLHD10] can be seen a sub-case of the HQR algorithm,

and we use our DAGUE-based implementation of HQR

to execute it. Indeed, [SLHD10] for a m × n tiled matrix,

using a block distribution on p processors, corresponds

to the HQR algorithm with the following parameters:

virtual grid value p = 1, domains of size a = m/p, data

distribution CYCLIC (a), low-level binary tree. (Since

p = 1, neither the coupling level nor the high level are

relevant.) [BBD+10] corresponds to the QR operation

currently available in DAGUE, which implements the

Tile QR factorization described in [8]. SCALAPACK

experiments use the SCALAPACK implementation of the

QR factorization found in the MKL libraries. The MKL

number of threads was set to 8, and one MPI process was

launched per node. For all other setups (that are DAGUE

based), the binary was linked with the sequential version

of the MKL library, and DAGUE was launched with 8
computing threads and an additional communication thread

per node. All threads are bound to a different core, except

the communication thread that is allowed to run on any

core.
In all experiments, we used 60 nodes (480 cores), and

the data was distributed along a 15 × 4 process grid for

HQR, [BDD+10], and SCALAPACK, and a 60×1 1D block

distribution for [SLHD10].

All HQR runs use a virtual cluster grid exactly mapping

the process grid used for data distribution. The coupling-

tree, whenever activated, is implemented with the so-called

domino scheme. We fix the tile size parameter b in our

experiments as being the block size which renders the best

sequential performance for the sequential TS update kernel.

More tuning could be done for HQR with respect to the tile

size and to the process grid shape parameters. In particular,

b directly influences at least two key performance metrics,

namely the number of messages sent and the granularity of

the algorithm. We have fixed these parameters for the whole

experiment set. Choosing b = 280 and a process grid p× q
of 15 × 4 leads to values that consistently provide good

performance.

B. Evaluation of HQR

HQR is a highly modular algorithms. The design space

offers by its parameters is large. In this section, we confront

our intuition of HQR with experimental data in order to

build up understanding on how these parameters influence

the overall performance of HQR. In Section V-C, we use this

newly acquired understanding to set up the parameters for

various fixed-parameters experiments. We note that, overall,

HQR is an intrinsically better algorithm than what has been

proposed in the past. Although we explain in this section

that some significant performance gains can be obtained by

tuning the parameters, setting some default values is enough

to outperform the current state of the art.

Figure 3 presents the performance of the Hierarchical QR

algorithm, HQR, for different matrix sizes, different trees

and different values of the a parameter. The matrix size

varies from a square matrix of 16 × 16 tiles to a tall and

skinny matrix of 1, 024 × 16 tiles. Since we are working

on a 15 × 4 process grid, this means that local matrices

range from 1 × 4 tiles to 68 × 4 tiles. In order to first

focus only on the influence of the TS level, low level and

615615

 0

 500

 1000

 1500

 2000

 2500

 3000

17920 35840 71680 143360 286720

P
e
r
f
o
r
m
a
n
c
e

(
G
F
l
o
p
/
s
)

M

Low-Level Tree
w/o domino: flat

fibonacci
greedy
binary

w/ domino: flat
fibonacci

greedy
binary

Figure 4: Performance of the HQR algorithm, on a M ×
4, 480 matrix. High-level set to Fibonacci and a = 4.

Influence of the low-level tree and the domino optimization.

high level trees, the domino coupling optimization is not

yet activated. Subfigure 3(a) presents the performance for

all possible high-level trees with a low-level tree set to

GREEDY, while Subfigure 3(b) presents the same with a

low-level tree set to FLATTREE. Figures with a low-level

tree set to BINARYTREE or FIBONACCI are omitted due to

lack of space; however they exhibit a behavior similar to

Figure 3(a) (GREEDY). Figure 4 presents the performance

of the HQR algorithm, for the same set of matrices, with a

fixed value a = 4, and a high-level tree set to FIBONACCI.

Measurements were done alternatively turning on or off the

domino optimization presented in Section IV-B.

Influence of a. Looking at Subfigure 3(a), we see that,

for small values of M , the value a = 1 is best. This is

because a higher value of a negatively impacts the degree

of parallelism of the algorithm when we use the low level

GREEDY tree on small matrices. When M increases, the

number of tasks increases, and we end up with abundant

parallelism. Consequently, we can safely increase the value

of a up to 4 or 8. For large M , we see that the speedup

between a = 1 and a = 4, 8 is about 10% which is the

speedup between TT update kernels and TS update kernels.

When the low level tree is FLATTREE, (Subfigure 3(b)), we

have a different story. Adding a flat tree (TS kernels) beneath

a low-level flat tree in the tall and skinny case (large M)

actually increases the parallelism. In effect, the TS flat trees

divide the length of the pipeline created by the low level

flat tree by a factor a. So there are two benefits for tall and

skinny matrices in adding a flat tree TS beneath a flat tree

TT: (1) faster kernels; (2) better parallelism. This explains

why the speedup for a = 4 or a = 8 with respect to a = 1
is way above 10% for large M . Altogether, significant gain

can be obtained by tuning the parameter a for various matrix

shapes, number of processors and TT vs TS ratio.

Influence of the low level tree. For tall and skinny matri-

ces, GREEDY is better than FLATTREE. In the 286, 720 ×

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 50000 100000 150000 200000 250000 300000

P
er

fo
rm

an
ce

 (
G

F
lo

p/
s)

M (N=4,480)

Theoretical Peak: 4358.4 GFlop/s

Scalapack
[BBD+10]
[SLHD10]

HQR

Figure 5: Comparison of performance for different algo-

rithms, on a M × 4, 480 matrix.

4, 480 case, the low level tree performs on a 68× 16 matrix

(m/p × n), and in that case the critical path length of flat

tree is approximately 2.6x the one of greedy (((68 + 2 ∗
16)/(log2(68) + 2 ∗ 16)) [1]). Looking at Subfigures 3(a)

and 3(b), we see a speedup of about 2x when the low

level tree changes from flat tree to greedy in the a = 1
case. When a increases, the low level trees affect fewer tiles

and, consequently, its influence on the overall algorithm is

reduced. See also Figure 4, where we have set a = 4, and

we observe that all low level trees perform more or less

similarly.

Influence of the high level tree. We observe similar perfor-

mances for all variants, although Fibonacci is slightly better

than its competitors.

Influence of the coupling level tree (domino optimization).
In Figure 4, we see the positive effect of the domino

optimization in the case of tall and skinny matrices. When

activated, for a tall and skinny matrices, it never significantly

deteriorates the performance and can have significant impact.

The domino optimization is all the more important when a

good coupling between the local tree and the distributed tree

is critical. This is illustrated best with the case of low level

FLATTREE. Indeed, this optimization enables look-ahead

on the local panels as explained in Section IV-B, thereby

increasing the degree of parallelism. Although not reported

in this manuscript, we note that domino optimization have a

negative impact when the matrix becomes large and square.

C. Comparison

Figures 5 and 6 compare the performance of the DAGUE

implementation of the HQR algorithm with the DAGUE

implementation of [BBD+10] and [SLHD10], and with the

MKL implementation of the SCALAPACK algorithm.

N fixed, M varies from square to tall and skinny. In

Figure 5, we evaluate the performance on various matrices,

from a square 16 × 16 tiled matrix to a tall and skinny

1, 024 × 16 tiled matrix. This is the same matrix set as

Figure 3 and Figure 4. We need low and high level trees

adapted for tall and skinny matrices so we set both level trees

616616

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 10000 20000 30000 40000 50000 60000 70000

P
er

fo
rm

an
ce

 (
G

F
lo

p/
s)

N (M=67,200)

Theoretical Peak: 4358.4 GFlop/s

Scalapack
[BBD+10]
[SLHD10]

HQR

Figure 6: Comparison of performance for different algo-

rithms, on a 67, 200×N matrix.

to FIBONACCI. The TS level trades off some parallelism in

the intra-level reduction to enable the use of TS sequential

kernels which are more efficient than the TT sequential

kernels. Since, in this experiments, the local matrices have

a large number of rows with respect to the number of

cores on the node, there is enough intra-node parallelism

within a column reduction to afford a TS level, so we set

a = 4. Finally in the tall and skinny case, we really want

a coupling level in order to decouple the low level tree

from the inter-processor communication, so we activate the

domino optimization. HQR scores 2,505 GFlop/s (57.5% of

peak).

The algorithm in SCALAPACK is not “tiled”, so it is

not “communication avoiding”. The algorithm performs one

parallel distributed reduction per column, this contrasts with

a tiled algorithm which performs one parallel distributed

reduction per tile. As a consequence, there is a factor of b
in the latency term between both algorithms. For a tall and

skinny matrix, the algorithm in SCALAPACK is indeed not

compute-bounded but latency-bounded and obtains at best

277 GFlop/s (6.4% of peak).

The main performance bottleneck for [BDD+10] is the

use of FLATTREE. FLATTREE has a long start-up time to

initiate the first column, it operates sequentially on the tiles

along the first tile column so that there are as many TS

kernels pipelined the one after the other as there are tiles

in a column (that is m,.e.g, =1024 in the largest example

considered here). This is not suitable when there are only

n = 16 tile columns to amortize the pipeline startup cost.

Another issue with [BDD+10] is that the algorithm does not

take into account the 2D block cyclic distribution of the data.

This has a secondary negative impact on the performance.

For a tall and skinny matrix, the algorithm in [BDD+10]

suffers from a long pipeline on the first tile column. The

length of this pipeline is m the number of row tiles or

the whole matrix. the algorithms scores at best 798 GFlop/s

(18.3% of peak).

[SLHD10] has been specially designed for tall and skinny

matrices [2]. The negative load imbalance that occurs by

using a 1D block data distribution instead of a 2D block

cyclic distribution is not significant for tall and skinny

matrices. At the inter-node level, the use of BINARYTREE is

a good solution. Yet, the use of TS FLATTREE at the intra-

node level is not appropriate when the local matrices have

many rows. As in [BDD+10], a long pipeline is instantiated.

A better tree is needed at the intra-node level. For a tall and

skinny matrix, the algorithm in [SLHD10] suffers from a

long pipeline on the first tile column. The length of this

pipeline is m/p, the number of row tiles held by a node

(which is an improvement with respect to [BDD+10] but

yet too much). The algorithms scores at best 1,897 GFlop/s

(43.5% of peak).

M fixed, N varies from tall-skinny to square. In Figure 6,

we evaluate the performance from a tall and skinny 240× 4
tiles matrix to a square 240 × 240 tiles matrix. The high-

level tree is set to FLATTREE, while the low-level tree

is set to FIBONACCI. Depending on the value of N , we

choose different values for a: a = 1 for small values of

N , and a = 4 for larger values. Similarly, the domino

coupling optimization is de-activated once the parallelism

due to the number of columns of tiles is sufficient enough to

avoid starvation, and the efficiency of the kernels becomes

more important. The choice of the FLATTREE high-level

tree is guided by the same reason: once the parallelism is

high enough to avoid starvation, the FLATTREE ensures a

significantly smaller number of inter-node communications.

[BDD+10] performs well on square matrices, however

it suffers from its more demanding communication pattern

than the HQR algorithm (since it does not take into account

the 2D block cyclic distribution of the data). [SLHD10]

performs better on tall and skinny matrices, however the

1D data distribution implies a load imbalance that becomes

paramount when the matrix becomes square. This is il-

lustrated by the ratio of performance between HQR and

[SLHD10]: on the square matrix, HQR reaches 3TFlop/s,

while [SLHD10] reaches 2TFlop/s, thus 2/3 of the perfor-

mance, as predicted in Section III-C. Likewise, when N =
M/2, [SLHD10] reaches 2.4TFlop/s, and HQR 2.9TFlop/s,

and 2.4/2.9 ≈ 5/6, as predicted by the model. Although the

performance of SCALAPACK is lagging behind the perfor-

mances of the other tile based algorithms, SCALAPACK

builds performance as M increases and score a respectable

1,925 GFlops/sec (44.2% of peak) on a square matrix.

VI. CONCLUSION

We have presented HQR, a hierarchical QR factorization

algorithm which introduces several innovative components

to squeeze the most out of clusters of multicores. On the

algorithmic side, we have designed a fully flexible algorithm,

whose many levels of tree reduction each significantly

contributes to improving state-of-the-art algorithms. A key

feature is that the high level specification of the algorithm

617617

makes it suitable to an automated implementation with the

DAGUE framework. This greatly alleviates the burden of

the programmer who faces the complex and concurrent

programming environments required for massively parallel

distributed-memory machines.

On the experimental side, our algorithm dramatically

outperforms all competitors, which can be seen as a major

achievement given (i) the ubiquity of QR factorization in

many application domains; and (ii) the vast amount of efforts

that have been recently devoted to numerical linear algebra

kernels for petascale and exascale machines. Our implemen-

tation of the new algorithm with the DAGUE scheduling

tool significantly outperforms currently available QR factor-

ization softwares for all matrix shapes, thereby bringing a

new advance in numerical linear algebra for petascale and

exascale platforms. More specifically, our experiments on

the Grid’5000 edel platform show the following gains at

both ends of the matrix shape spectrum:

• On tall and skinny matrices, we reach 57.5% of theoretical

computational peak performance, to be compared with 6.4%

for SCALAPACK (9.0x speedup), 18.3% for [BDD+10]

(3.1x), and 43.5% for [SLHD10] (1.3x)

• On square matrices, we reach 68.7% of theoretical com-

putational peak performance, to be compared with 44.2%

for SCALAPACK (1.6x), 62.2% for [BDD+10] (1.1x), and

46.7% for [SLHD10] (1.5x).

Future work includes several promising directions. From

a theoretical perspective, we could compute critical paths

and assess priorities to the different elimination trees. This

is a very promising but technically challenging direction,

because it is not clear how to account for the different

architectural costs, and because of the huge parameter space

to explore. From a more practical perspective, we could

perform further experiments on machines equipped with

accelerators (such as GPUs): again, the flexibility of the

DAGUE software will dramatically ease the design of HQR

on such platforms, and will enable us to explore a wide

combination of reduction trees and priority settings.

REFERENCES

[1] H. Bouwmeester, M. Jacquelin, J. Langou, and Y. Robert,
“Tiled QR factorization algorithms,” in SC’2011, the
IEEE/ACM Conference on High Performance Computing
Networking, Storage and Analysis. ACM Press, 2011.

[2] F. Song, H. Ltaief, B. Hadri, and J. Dongarra, “Scalable
tile communication-avoiding QR factorization on multicore
cluster systems,” in SC’10, the 2010 ACM/IEEE conference
on Supercomputing. IEEE Computer Society Press, 2010.

[3] E. Agullo, C. Coti, J. Dongarra, T. Herault, and J. Langou,
“QR factorization of tall and skinny matrices in a grid
computing environment,” in IPDPS’10, the 24st IEEE Int.
Parallel and Distributed Processing Symposium, 2010.

[4] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, “Parallel
tiled QR factorization for multicore architectures,” Concur-
rency Computat.: Pract. Exper., vol. 20, no. 13, pp. 1573–
1590, 2008.

[5] G. Quintana-Ortı́, E. S. Quintana-Ortı́, R. A. van de Geijn,
F. G. V. Zee, and E. Chan, “Programming matrix algorithms-
by-blocks for thread-level parallelism,” ACM Transactions on
Mathematical Software, vol. 36, no. 3, 2009.

[6] J. W. Demmel, L. Grigori, M. Hoemmen, and J. Langou,
“Communication-avoiding parallel and sequential QR and
LU factorizations: theory and practice,” LAPACK Working
Note, Tech. Rep. 204, 2008. [Online]. Available: http:
//www.netlib.org/lapack/lawnspdf/lawn204.pdf

[7] B. Hadri, H. Ltaief, E. Agullo, and J. Dongarra, “Tile QR
factorization with parallel panel processing for multicore
architectures,” in IPDPS’10, the 24st IEEE Int. Parallel and
Distributed Processing Symposium, 2010.

[8] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, A. Haidar,
T. Herault, J. Kurzak, J. Langou, P. Lemarinier, H. Ltaief,
P. Luszczek, A. YarKhan, and J. Dongarra, “Flexible develop-
ment of dense linear algebra algorithms on massively parallel
architectures with DPLASMA,” in 12th IEEE International
Workshop on Parallel and Distributed Scientific and Engi-
neering Computing (PDSEC’11), 2011.

[9] S. Blackford and J. J. Dongarra, “Installation guide for
LAPACK,” LAPACK Working Note, Tech. Rep. 41, Jun.
1999, originally released March 1992. [Online]. Available:
http://www.netlib.org/lapack/lawnspdf/lawn41.pdf

[10] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Dem-
mel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Pe-
titet, K. Stanley, D. Walker, and R. C. Whaley, ScaLAPACK
Users’ Guide. SIAM, 1997.

[11] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault,
P. Lemarinier, and J. Dongarra, “DAGuE: A generic
distributed DAG engine for high performance computing,”
in 16th International Workshop on High-Level Parallel
Programming Models and Supportive Environments
(HIPS’11), 2011.

[12] M. Cosnard, J.-M. Muller, and Y. Robert, “Parallel QR
decomposition of a rectangular matrix,” Numerische Math-
ematik, vol. 48, pp. 239–249, 1986.

[13] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, “A class
of parallel tiled linear algebra algorithms for multicore archi-
tectures,” Parallel Computing, vol. 35, pp. 38–53, 2009.

[14] A. Sameh and D. Kuck, “On stable parallel linear systems
solvers,” J. ACM, vol. 25, pp. 81–91, 1978.

[15] J. Modi and M. Clarke, “An alternative Givens ordering,”
Numerische Mathematik, vol. 43, pp. 83–90, 1984.

[16] A. Pothen and P. Raghavan, “Distributed orthogonal factoriza-
tion: Givens and Householder algorithms,” SIAM J. Scientific
Computing, vol. 10, no. 6, pp. 1113–1134, 1989.

[17] R. da Cunha, D. Becker, and J. Patterson, “New parallel
(rank-revealing) QR factorization algorithms,” in Euro-Par
2002. Parallel Processing: Eighth International Euro-Par
Conference, Paderborn, Germany, August 27–30, 2002.

[18] J. Langou, “Computing the R of the QR factorization of tall
and skinny matrices using MPI Reduce,” arXiv, Tech. Rep.
1002.4250, 2010.

[19] J. Demmel, M. Hoemmen, M. Mohiyuddin, and K. Yelick,
“Minimizing communication in sparse matrix solvers,” in
SC’09, the 2009 ACM/IEEE conference on Supercomputing.
IEEE Computer Society Press, 2009, pp. 1–12.

[20] F. Cappello, F. Desprez, M. Dayde, E. Jeannot, Y. Jegou,
S. Lanteri, N. Melab, R. Namyst, P. Primet, O. Richard,
E. Caron, J. Leduc, and G. Mornet, “Grid’5000: A large scale,
reconfigurable, controlable and monitorable grid platform,”
in Proc. 6th IEEE/ACM Int. Workshop on Grid Computing
(Grid’2005). IEEE Computer Society Press, 2005.

618618

